















































An Introduction to
Time-Frequency Analysis
Outline
.
Introduction
.
STFT
.
Rectangular STFT
.
Gabor Transform
.
Wigner Distribution Function
.
Motions on the Time-Frequency Distribution
.
FRFT
.
LCT
.
Applications on Time-Frequency Analysis
.
Signal Decomposition and Filter Design
.
Sampling Theory
.
Modulation and Multiplexing
Introduction
.
Frequency?
.
Another way to consider things.
.
Frequency related applications
.
FDM
.
Sampling
.
Filter design , etc ….
Introduction
.
Conventional Fourier transform
.
1-D
.
Totally losing time information
.
Suitable for analyzing stationary signal
,i.e. frequency does not vary with time.
[1]
.
Introduction
.
Time-frequency analysis
.
Mostly originated form FT
.
Implemented using FFT
[1]
Short Time Fourier Transform
.
Modification of Fourier Transform
.
Sliding window, mask function, weighting function w(t)
.
Mathematical expression
.
2()()(,)(){()}jfXtfxedFxwtwt.......
.
.
..
.....
.
Reversing
Shifting
FT
Short Time Fourier Transform
.
Requirements of the mask function
.
w(t) is an even function. i.e. w(t) w(-t).
.
max(w(t))=w(0),w(t1) w(t2) if |t1|<|t2|.
.
when |t| is large.
.
An example of window functions
.
t
Window width K
Short Time Fourier Transform
.
Requirements of the mask function
.
w(t) is an even function. i.e. w(t) w(-t).
.
max(w(t))=w(0),w(t1) w(t2) if |t1|<|t2|.
.
when |t| is large.
.
An illustration of evenness of mask functions
.
Signal
Mask
t0
.
Short Time Fourier Transform
.
Effect of window width K
.
Controlling the time resolution and freq. resolution.
.
Small K
.
Better time resolution, but worse in freq. resolution
.
Large K
.
Better freq. resolution, but worse in time resolution
Short Time Fourier Transform
.
The time-freq. area of STFTs are fixed
K decreases
tt
f f
Rectangular STFT
.Rectangle as the mask function
.Uniform weighting
.Definition
.Forward
.Inverse
where
2(,)()
tjBBftXtfxed....
.
.
.
..21()(,)jftxtXtfedf.
.
..
..
1tBttB....
2B
1
B=0.25
t
f
10 20 300
B=0.25
t
f
10 20 300
f
0
Rectangular STFT
.
Examples of Rectangular STFTs
.
cos(4),010()cos(2),1020cos(),2030ttxttttt
.
.
.
...
.
....
.
...
2,010()1,10200.5,2030itfttt
...
.
....
.
...
B=0.5
2
2
1
1
0
0
t
10 2030
Rectangular STFT
.
Examples of Rectangular STFTs
.
cos(4),010()cos(2),1020cos(),2030ttxttttt
.
.
.
...
.
....
.
...
2,010()1,10200.5,2030itfttt
...
.
....
.
...
B=1 B=3
t
f
t
f
0 10 20 30 0 10 20 30
0
1
22
1
0
Rectangular STFT
.
Properties of rec-STFTs
.
Linearity
()()()
(,)(,)(,)
htxtytHtfXtfYtf
..
..
.......
.
Shifting
00202()(,)
tBjfjftBxedXtfe........
.
..
.
....
.
Modulation
0202[()](,)
tBjftjfBefxedXtf......
.
.
.
...
Rectangular STFT
.
Properties of rec-STFTs
.
Integration
2(),
(,)
0,
jfvxvvBtvBXtfedfotherwise
.
.
..
.....
...
.
.
Power integration
**(,)()(,)()
tBtBXtfdfxdYtfy...
..
...
...
.
Energy sum
**((,)()(),)XtfdfdtBxfydYt...
...
......
....
Gabor Transform
.
Gaussian as the mask function
.
.
Mathematical expression
.
2221.9143()()
1.92143(,)()()
tjftjfttxGtfexdedexe............
.
....
.
..
...
....
.
Since
where
.
GT’s time-freq area is the minimal against other STFTs!
Gabor Transform
.
Compared with rec-STFTs
.
Window differences
.
Resolution .
The GT has better clarity
.
Complexity
Gabor Transform
.
Compared with rec-STFTs
.
Resolution .
GT has better clarity
.
Example of
2()tyte...
The rec-STFT The GT
t
f
t
f
00
00
Gabor Transform
.
Compared with the rec-STFTs
.
Window differences
.Resolution .GT has better clarity
.Example of
2()tyte...
The rec-STFT The GT
t
f
t
0
0
0
0
Gabor Transform
.
Properties of the GT
.
Linearity
()()()
(,)(,)(,)zxyzxyGtfGtfGtf
.....
..
.......
.
Shifting
0002()(,)(,)jfxttxtGttfGtfe..
...
.
Modulation
200()
(,)(,)jtfxxteGfGtftf...
Gabor Transform
.
Properties of the GT
.
Integration
222(1)(,)()kjtftkxGtfedfexkt..
.
..
..
..
K=1-> recover original signal
.
Power integration
.
Energy sum
.
Power decayed
Gabor Transform
.
Gaussian function centered at origin
.
1..
.
Generalization of the GT
.
Definition
221.91()2()2431.9143(,)()()
ttjftjfxtGtfeexdeexd.....
.
..
.
.......
.
.
......
..
.
....
0..
Gabor Transform
.
.
plays the same role as K,B.(window width)
.
increases -> window width decreases
.
..
decreases -> window width increases
.
Examples : Synthesized cosine wave
1..0.1..
t
f
t
f
0 10 20 30 0 10 20 30
0
2
1
0
1
2
Gabor Transform
.
.
plays the same role as K,B.(window width)
.
increases -> window width decreases
.
..
decreases -> window width increases
.
Examples : Synthesized cosine wave
1.5..5..
t
f
t
f
0 10 20 30 0 10 20 30
0
2
1
0
1
2
Wigner Distribution Function
.
Definition
.
**2()()()()
2(,){
2}
22jfxxtxtWtfedFxtxt...
.....
.
..
.......
.
Auto correlated -> FT
.
Good mathematical properties
.
Autocorrelation
.
Higher clarity than GTs
.
But also introduce cross term problem!
Wigner Distribution Function
.
Cross term problem
.
WDFs are not linear operations.
.
22(,)||(,)||(,)hgsWtfWtfWtf....
*2***()()()[()
2]
222jfgtstgtsedt......
.....
.
.
..
.......
Wigner Distribution Function
.
An example of cross term problem
.
22(4)
10(6)
91()
19tjtjttetxtet
.
..
.......
....
11(4)9125()
1(26)192ittfttt
.
.
.
........
.....
..
Without cross term With cross term
t
f
f
t
0 0
00
Wigner Distribution Function
.
Compared with the GT
.
Higher clarity
.
Higher complexity
.
An example
.
44()cos(4)
2jtjteextt
..
.
..
..
WDF GT
t
f
t
f
00
0 0
Wigner Distribution Function
.
But clarity is not always better than GT
.
Due to cross term problem
.
Functions with phase degree higher than 2
WDF GT
[1]t
f
t
f
0
0
0
0
Wigner Distribution Function
.
Properties of WDFs
.
Shifting
.
Modulation
20e(
0)
(,)(,)jftxxtWtfWtff...
.
Energy property
22(,)|()||()|xWtfdtdfxtdtXfdf
....
........
......
Wigner Distribution Function
.
Properties of WDFs
.
Recovery property
.
is real
.
Energy property
.
Region property
.
Multiplication
.
Convolution
.
Correlation
.
Moment
.
Mean condition frequency and mean condition time
Motions on the Time-
Frequency Distribution
.
Operations on the time-frequency domain
.Horizontal Shifting (Shifting on along the time axis)
0,00002()(,)
()(,)
jSTFTGTxWDFxftxttSttfxttWttfe...................
t
f
.
Vertical Shifting (Shifting on along the freq. axis)
002,020()(,)
()(,)
jftSTFTGTxjftWDFxextStffextWtff
.
.
................
f
t
Motions on the Time-
Frequency Distribution
.
Operations on the time-frequency domain
.
Dilation
,1()(,)
||
1()(,)
||
STFTGTxWDFxttxSafaaattxWafaaa
.
.........
.....
..
.
Case 1 : a>1
.
Case 2 : a<1
Motions on the Time-
Frequency Distribution
.
Operations on the time-frequency domain
.Shearing -Moving the side of signal on one direction
.Case 1 :
2()()jatytext..
(,)(,)
(,)(,)
yxyxaStfStftWtfWttaf
.......
t
f
Moving this side a>0
.
Case 2 :
2()()
tjaytext
.
..
(,)(,)
(,)(,)
yxyxStfStffWtfWtfafa
.......
t
f
a>0
Moving this side
Motions on the Time-
Frequency Distribution
.
Rotations on the time-frequency domain
.
Clockwise 90 degrees .
Using FTs
t
f
2|(,)||(,)|
(,)(,)
(,)(,)
XjftXxxXxStfSftGtfGftWtfWfte..
..
.
.
.
.
.
.
...
Motions on the Time-
Frequency Distribution
.
Rotations on the time-frequency domain
.
Generalized rotation with any angles .
Using WDFs or GTs via the
FRFT
.
Definition of the FRFT
22cot2csccot()[()]1cot()jujutjtFXuOxtjeeextdu.......
..
.
.
..
....
.
Additive property
Motions on the Time-
Frequency Distribution
.
Rotations on the time-frequency domain
.
[Theorem]
The fractional Fourier transform (FRFT) with angle .
is equivalent
to the clockwise rotation operation with angle .
for the WDF or
GT.
(,)(cossin,sincos)
(,)(cossin,sincos)
XXxxWuvWuvuvGuvGuvuv
.
.
....
....
.........
Old
New
New
Old
'
'
cossinsincosuuvv
..
..
.......
.........
......
'
'
cossinsincosuuvv
..
..
......
................
Clockwise rotation matrix
Counterclockwise rotation matrix
Motions on the Time-
Frequency Distribution
.
Rotations on the time-frequency domain
.
[Theorem]
The fractional Fourier transform (FRFT) with angle .
is equivalent
to the clockwise rotation operation with angle .
for the WDF or
GT.
.
Examples (Via GTs)
[1]
Motions on the Time-
Frequency Distribution
.
Rotations on the time-frequency domain
.
[Theorem]
The fractional Fourier transform (FRFT) with angle .
is equivalent
to the clockwise rotation operation with angle .
for the WDF or
GT.
.
Examples (Via GTs)
[1]
Motions on the Time-
Frequency Distribution
.
Twisting operations on the time-frequency domain
.
LCT s
Old New
t t
f
f
(,,,)
(,,,)
(,)(,)
(,)(,)
XxabcdXxabcdWuvWdubvcuavWaubvcudvWuv
.......
.....
'
'
udbucavv
.......
................
Inverse exist since ad-bc=1
abcd
..
..
..
LCT
Applications on Time-Frequency
Analysis
.
Signal Decomposition and Filter Design
.
A signal has several components -> separable in time
-> separable in freq.
-> separable in time-freq.
41
t f t
f
Applications on Time-Frequency
Analysis
.
Signal Decomposition and Filter Design
42
.An example
t
f
1.2.1t0tRotation -> filtering in the FRFT domain
Applications on Time-Frequency
Analysis
.
Signal Decomposition and Filter Design
.
An example
[1]
Applications on Time-Frequency
Analysis
.
Signal Decomposition and Filter Design
.An example
[1]
2220.230.38.50.469.6()0.50.50.5jtjtjtjtjtnteee.....
Applications on Time-Frequency
Analysis
.
Signal Decomposition and Filter Design
.
An example
[1]
2220.230.38.50.469.6()0.50.50.5jtjtjtjtjtnteee.....
Applications on Time-Frequency
Analysis
.
Signal Decomposition and Filter Design
.
An example
[1]
Applications on Time-Frequency
Analysis
.
Sampling Theory
.
Nyquist theorem : , B
.
Adaptive sampling
[1]
Conclusions and Future work
.
Comparison among STFT,GT,WDF
rec-STFT GT WDF
Complexity正正正正正正
Clarity正正正正正正
.
Time-frequency analysis apply to image processing?